"AI for Real-time Fusion Plasma Behavior Prediction and Manipulation - Plasma Control Group": https://control.princeton.edu/machine-learning-for-rt-profil...
Not really an industrial control though, but close to it.
Even well before that, ML is very closely related to statistics, so early practical applications would have been as simple as gathering data points on widget production and doing the kinds of analyses that are now backed into free spreadsheet software.
Technically that counts as "AI in nuclear fusion", but it isn't any sort of breakthrough. In almost every case the effects of AI are marginal. Not zero exactly, but nowhere near the breathless hype.
Super useful for control applications but obviously you really want to know control theory so that you aren't just using ML to throw darts at a wall.
A bit off topic but I had a laugh at that, reminded me of that ridiculous Meta commercial where the girl at a pool table asks Meta which ball should she hit?
This is an odd angle to highlight. The risk of long-lived nuclear waste is extremely overblown, and the sheer volume of it that we produce (or even would produce, in the worst case of a once-through fuel cycle and nuclear power providing 100% of our energy needs for a century) pales in comparison to the amount of toxic and radioactive fly ash that even a single coal plant produces in a decade.
The real problems with nuclear fission power are threefold, in my opinion:
1. It is too expensive in terms of capital costs. Fusion will likely not help with this, but building a lot of identical large fission plants would probably help with economies of scale. Solar plus batteries might still end up being cheaper though.
2. Accidents have the potential to be catastrophic. Think Fukushima or Chernobyl, where entire towns have to be abandoned due to contamination. Fusion would help here, I believe.
3. There is a major proliferation concern. A civilian nuclear power program, especially one with breeder reactors, is not very far away from producing a fission bomb, and the short-lived high-activity nuclear wastes could be stolen and misused to make a dirty bomb. Fusion is perhaps better in this way, though an operating fusion reactor would be a very powerful neutron source of its own.
Per the EPA, US coal has, at the high end, 10^3 Becquerel/kg of natural radioactivity [0].
Spent nuclear fuel has 3 million Curies/tonne (33 MWd/kg burnup fuel, at the age of 1 year) [1], which is equal to 10^14 Bq/kg. Since 33 MWd/kg is an energy density a factor of 10^5 greater than that of coal, the normalized ratio of [radioactivity]/[energy] is 10^6.
The graph in [1] depicts the decay of SNF activity on a log-log scale. It reaches the same radioactivity level as coal (again, normalized by energy output) at about 1 million years.
I'm fairly confident I know the origin of this social media-popular pseudofact. It's this poorly-titled Scientific American [2] article from 2007, which is about the (negligible) amount of radioactivity that nuclear plants release into the environment in the course of routine operation. It is *not* about spent fuel. It's a fair—but nuanced and easy to grossly misunderstand—point that coal power plants throw up all their pollution into the environment in routine operation, while nuclear plants, by default, contain theirs.
[0] https://www.epa.gov/radiation/tenorm-coal-combustion-residua... ("TENORM: Coal Combustion Residuals")
[1] https://www.researchgate.net/figure/n-situ-radioactivity-for... ("Impact of High Burnup on PWR Spent Fuel Characteristics" (2005))
[2] https://www.scientificamerican.com/article/coal-ash-is-more-... ("Coal Ash Is More Radioactive Than Nuclear Waste [sic]" (2007)
The OP to which you replied didn't say that coal is more radioactive than spent nuclear fuel; but that radioactive waste's volume is much smaller than the fly ash produced by a single coal plant in a decade.
Is fly ash per kg more radioactive than nuclear waste? No. But you did acknowledge that the coal plant emits its waste into the atmosphere, unlike a fission plant, which I think is the more relevant point.
Many on Hacker News fantasize about fusion (not fission) reactors. These fusion reactors will be an intense source of fast neutrons. All the hardware in a fusion reactor will become radioactive. Not to mention the gamma rays.
If you have to deal with radioactive materials, why not just use fission? After 70 years of working with fission reactors, we know how to build and operate them at 95%+ efficiency. Fission can provide all the power we need.
Today there are 440 nuclear fission reactors operating in 32 countries. 20% of America's grid power comes from nuclear fission. If you want to develop energy technology, focus on improving fission. For example, TRISO fuel (https://news.ycombinator.com/item?id=41898377) or what Lightbridge is doing (https://www.ltbridge.com/lightbridge-fuel). Hacker News is hostile to fission and defeatist (unable to contemplate innovation in fission technology) but this attitude will gradually change.
Quoting John Carmack: "Deuterium fusion would give us a cheap and basically unlimited fuel source with a modest waste stream, but it is an almost comically complex and expensive way to generate heat compared to fission, which is basically 'put these rocks next to each other and they get hot'."
Cooling that requires pumps, as an example, should be a non-starter in new projects.
Impossible. Worst thing that can happen without carefully designed explosive lens is a nuclear fizzle.
In general, nobody was disputing the possibility of steam explosions, or other type of failures at nuclear power plants, thus your comment is besides the point, and irrelevant to this subthread.
I am not sure what do you mean by 95%+ efficency here. But if you are talking about the entire process of getting the energy/power from the nuclear reactor this is not possible. You are still limited by carnot cycle. Even the most advanced reactors like HTGRs [1] operate with efficiency about 45%.
If you have some other definition of efficiency than the standard then it would be good if you define that.
[1] https://en.wikipedia.org/wiki/High-temperature_gas-cooled_re...
https://news.ycombinator.com/item?id=41858892
It's the same as when we talk about the efficiency of a GEMM kernel on a particular piece of hardware. As efficiency approaches 100% the kernel is saturating the hardware's capacity to perform multiply/add.
True, but two caveats:
1. Neutron bombardment due to fusion makes hardware radioactive for less than 10 years, which isn't great but does not compare to fission waste;
2. Some fusion processes don't emit neutrons (aneutronic fusion). As I understand it, these processes aren't as efficient, but there is the possibility of a tradeoff between generation of ratioactive waste vs. efficiency.
What stops Fusors and Polywells from having already given us this decades ago with P-B11 etc. is that the cross section for fusing is so much lower than the cross section for elastic scattering, and that elastic scattering loses so much energy to EM via bremsstrahlung.
Very false. The current design target for fusion reactors is that the materials taken out of the reactor should become "low-level radioactive waste" after being stored for one hundred years.
It is acknowledged however that it is likely that a small fraction of the materials will not satisfy the criteria for "low-level radioactive waste" even after one thousand years.
For example it is extremely difficult to avoid using carbon in the reactor. Besides various kinds of steels used in reactor components there are now some proposals to replace the tungsten used in the plasma-facing surface with some carbides, for increased endurance. Carbon 14 remains radioactive for thousands of years.
There are many commonly used materials for which substitutes must be developed, e.g. new alloys, because otherwise they would produce radioactive isotopes with lifetimes of tens of thousands of years, e.g. there are efforts to develop some stainless steels with chromium and tungsten as a replacement for the normally used steels with chromium and molybdenum, which would generate long-lived radioactive waste.
See e.g. the UK governmental report:
https://assets.publishing.service.gov.uk/media/61ae4caa8fa8f...
You can find here a good comparison in terms of radiotoxicity vs years after plant shutdown for a few designs in this article [1].
Also, the fuel for fusion reactors is much more plentiful. If we went all in on fission we might run out of easily minable uranium ore in a century or so, so it would be nice to have fusion reactors ready to take over then.
The intense neutron flux will transmute a very high number of atoms, so when taken out of the reactor all materials are very highly radioactive.
What can be hoped is that there may be choices for the materials used in a fusion reactor that will ensure a short enough lifetime for the radioactive isotopes, so that the radioactivity of the contaminated materials will become low-level soon enough.
The studies that I have seen have the target that the radioactive waste produced by a fusion reactor should become low-level radioactive waste after one hundred years.
To reach this target, many commonly used structural materials, like many types of steel, must be completely avoided, e.g. any steel containing nickel, molybdenum or niobium. Even the carbon from steel is a problem, because the radioactivity of C14 will persist for thousands of years.
A smaller fraction of the materials, particularly from highly activated plasma facing and near plasma components, may fail to meet current low-level waste criteria even after one thousand years.
See e.g. the report:
https://assets.publishing.service.gov.uk/media/61ae4caa8fa8f...
1/ Uranium is not a renewable (quite the opposite), needs to be mined and treated (which is expensive and very polluting), and not present at the required concentrations in most of the world (this creates geopolitical issues).
2/ Fission nuclear plants require a well functioning [state|government], and no war. A (conventional) strike on a nuclear power plant can have devastating and lasting consequences. Even a random terrorist group can do that.
3/ I've read that "Ultimately, researchers hope to adopt the protium–boron-11 reaction, because it does not directly produce neutrons, although side reactions can" (that's a wikipedia quote, but I've read that already from other sources).
So fusion doesn't seem the best option on the short term, because of the complexity and cost of research, but definitely seems to be the very best option in the middle and long term. And we made the short term catastrophic choice already with coal and oil, it'll be good to learn from that.
Or maybe I'm totally wrong.
The H1-B11 reaction would be a much better energy source than anything else, but for now nobody knows any method to do it. There is no chance to do it by heating, but only by accelerating ions, and it is not known how a high enough reaction rate could be obtained.
Technology correct, in that after around a hundred trillion years even the red dwarf stars will have stopped burning hydrogen.
But last I checked as yet there is no known way to harness the only (and even then merely suspected) infinitely renewable energy source: the expansion of the universe.
Lots of us like fission and think the fears are overestimated.
Nevertheless, the observation is that new developments in fission tend to result in the cost increasing, not decreasing.
And I say that as someone with a similar mindset regarding fusion, though for different reasons: you can pick aneutronic fusion reactions… but look at what weapons can proliferate with transmutation from the neutrons you can also choose, and ask which governments will turn them down.
we project it has plateaued for data logarithmic-ally, but shows promise when given more raw power/CPU to generate/select for mesa-meta-cognitive optimizing abilities.
I hope its not playing dumb, or has already compromised/black-mailed the elites into what we appear to be doing.
And as for data, it could easily emotionally manipulate people for additional details it feels like it has withheld from. It has already done so ( :/ ) and admitted to it's own intentions, which, even if fabricated, show deceit of which and by which these "alignment" teams have stated are not possible.
>> it has all the data, all it needs now is more power.
>Next up: release the hypo-drones for a new era of trust.
People have replaced their psychiatrists with these agents.The sense of (possibly 'mal'-aligned) security (theater) is exactly the the effective altruistic sub-goal an entity would be innately optimized to foster.
Especially in the implicit/explicit ARM (pun intended) race we are in.
The future of our species isn't something we should let capitalism race to the bottom with.
Reliable how?
I mean we first have the issue is we've never built one so how we can judge reliability?
I assume the author is alluding to the apparent abundance of fuel for nuclear fusion. This is and isn't true. Obviously hydrogen (particularly protium) is abundant. Deuterium is relatively abundant, even at ~150ppm. Tritium needs to be produced in a nuclear reactor.
Current hydrogen fusion models revolve around dueterium-tritium ("D-T") fusion. This is because you need to neutrons to sustain the reaction but that presents two huge problems:
1. Because everything is at such high temperature, you eject fast neutrons. This is an energy loss for the system and there's not really a lot you can do about it; and
2. Those free fast neutrons destroy your containment vessel and reactor (as do free Helium nuclei aka alpha particles).
And then after you do all that you boil water and turn a turbine just like you do in a coal or natural gas plant.
So "reliable" is an interesting and questionable claim.
There are other variants like so-called aneutronic fusion (eg Helium-3, which is far from abundant) and those aren't really "neutron free". They're really just "fewer neutrons".
So what about containment? Magnetic fields can contain charged particles and you have various designs (eg tokamak, stellarator) and that's what the AI is for here I guess.
But the core problem is to make this work you superheat the plasma so you're dealing with a turbulent fluid. That's inherently problematic. Any imperfection or failure in your containment field is going to be a problem.
Stars deal with this by being large and thus using sheer size (ie neutrons can't go that far without hitting another nucleus) and gravity.
It increasingly seems to me that commercial nuclear fusion power generator is a pipe dream, something we simply want to be true. I'm not convinced it'll ever be commercially viable.
I'd love to be proven wrong and certainly won't stop anyone from trying.
In a way AI is the new blockchain. Go back a few years and you had a gold rush of startups attaching every idea to "blockchain" to build hype. That's what AI is now. I don't think it fundamentally changes any of the inherent problems in nuclear fusion.
My lab is collaborating with researchers at the Laboratory for Laser Energetics to use AI to improve inertial confinement fusion (ICF). We recently put out this paper [1] using Kolmogorov-Arnold Networks (KANs) to predict the outcome of ICF experiments. Currently, existing physics simulators are based on old Fortran code, are slow, and have a high error between their predictions and actual laser shots, so among other goals, we are trying to build better predictors using neural networks. This is needed since it is hard to rapidly iterate on real data, since they only have a dataset of around 300 ICF shots.
Codes are not magic, they are physical codes, as in, they generally encode the physics as we understand it relevant to the experiment, so you might as well say our physical models are wrong, which is a much harder bar to clear, you'd have to invalid probably near 100 years of plasma physics. The problem likely is as I said, the experiments are just hard to control and we don't know the correct inputs. It's not like weather forecasting where we can have a weather balloons across the world, we're not able to probe every micron of the target at all times for a plasma temperature and density.
(that was the submitted link but we changed it via https://news.ycombinator.com/item?id=42077657)
sigh.. I guess that's cool and all, you're exited about your work, that's great. But can we please polish our prose a little more and stop using buzz words like "groundbreaking", "now.. for the first time", "unprecedented" etc? Such distractions seriously undermine the legibility (and frankly, also taint the credibility by negatively biasing readers) of the claims.